A Multistep Formulation of the Optimized Lax-Wendroff Method for Nonlinear Hyperbolic Systems in Two Space Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multistep Formulation of the Optimized Lax-Wendroff Method for Non- linear Hyperbolic Systems in Two Space Variables

Introduction. In this note we develop a multistep formulation of the optimized Lax-Wendroff method for hyperbolic systems. This scheme was derived by Strang [6], [7]. The present formulation extends in a natural way, the two-step formulation of Richtmyer [5] for systems in one-space variable. We summarise this case in the next section. One Space Dimension. We consider the first-order conservati...

متن کامل

Approximate Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

The Lax-Wendro↵ time discretization is an alternative method to the popular total variation diminishing Runge-Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and e cient than RKDG methods ...

متن کامل

The Near - Stability of the Lax - Wendroff Method

In discussing finite difference methods for the solution of hyperbolic par t ia l differential equations, STETrER [1] used est imates on some absolutely convergent Fourier series to prove stabi l i ty and instabi l i ty with respect to uniform convergence. I f / , a complex valued function on the circle, has an absolutely convergent Fourier series, then the n-th power of ] also has an absolutel...

متن کامل

Inverse Lax-Wendroff procedure for numerical boundary treatment of hyperbolic equations

Abstract We discuss a high order accurate numerical boundary condition for solving hyperbolic conservation laws on fixed Cartesian grids, while the physical domain can be arbitrarily shaped and moving. Compared with body-fitted meshes, the biggest advantage of Cartesian grids is that the grid generation is trivial. The challenge is however that the physical boundary does not usually coincide wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1968

ISSN: 0025-5718

DOI: 10.2307/2004573